The constraint satisfaction problem for Bounded width and Maltsev algebras

Miklós Maróti
University of Szeged

Constraint satisfaction problem (CSP)

Definition. For a finite relational structure $\mathbb{B}=(B ; \mathcal{R})$ we define

$$
\operatorname{CSP}(\mathbb{B})=\{\mathbb{A} \mid \mathbb{A} \rightarrow \mathbb{B}\} .
$$

Example. $\operatorname{CSP}\left(\boldsymbol{\Omega}_{\mathbf{0}}\right)$ is the class of three-colorable (directed) graphs.
Example. $\operatorname{CSP}(\boldsymbol{\rho})$ is the class of (directed) bipartite graphs.
The membership problem for $\operatorname{CSP}(\mathbb{B})$ is always decidable in nondeterministic polynomial time (NP, intractable), sometimes in polynomial time (\mathbf{P}, tractable).

Dichotomy Conjecture (Feder, Vardi, 1999). For every finite structure \mathbb{B} the membership problem for $\operatorname{CSP}(\mathbb{B})$ is either in \mathbf{P} or NP-complete.

Has been verified in many special cases (2-element structures, undirected graphs, smooth directed graphs, etc.) and yielded structure theorems in the tractable cases. Open for directed graphs.

CSP REDUCTIONS

Lemma. We may assume, that

- \mathbb{B} is a core, i.e., every endomorphism is an automorphism,
- every unary constraint relation $\{b\}$ is in \mathbb{B},
- all relations are at most binary (or directed graph).

Definition. A polymorphism of \mathbb{B} is a homomorphism $p: \mathbb{B}^{n} \rightarrow \mathbb{B}$ (edge preserving operation).

$$
\operatorname{Pol}(\mathbb{B})=\left\{p \mid p: \mathbb{B}^{n} \rightarrow \mathbb{B}\right\}
$$

Lemma. $\operatorname{Pol}(\mathbb{B})$ is a clone, and all polymorphisms are idempotent under our assumptions

$$
p(x, \ldots, x) \approx x
$$

Lemma. $\operatorname{Pol}(\mathbb{C}) \subseteq \operatorname{Pol}(\mathbb{B}) \Longrightarrow \operatorname{CSP}(\mathbb{B})$ is polynomial time reducible to $\operatorname{CSP}(\mathbb{C})$.

- \mathbb{B} has nice polymorphisms $\Longrightarrow \operatorname{CSP}(\mathbb{B})$ is in \mathbf{P}.
- \mathbb{B} has no nice polymorphisms $\Longrightarrow \operatorname{CSP}(\mathbb{B})$ is NP-complete.

Nice Polymorphisms

Theorem. $\operatorname{CSP}(\mathbb{B})$ is in \mathbf{P} if $\operatorname{Pol}(\mathbb{B})$ contains one of the following:

- a semilattice operation (Jevons et. al.)
- a near-unanimity operation

$$
p(y, x, \ldots, x) \approx p(x, y, x, \ldots, x) \approx \cdots \approx p(x, \ldots, x, y) \approx x
$$

- a totally symmetric idempotent operation (Dalmau, Pearson, 1999),
- a Maltsev operation: $p(x, y, y) \approx p(y, y, x) \approx x$ (Bulatov, 2002; Dalmau, 2004),
- Generalized majority-minority operation (Dalmau, 2005),
- Edge operations (Idziak, Marković, McKenzie, Valeriote, Willard, 2007),
- CD Jónsson operations (Barto, Kozik, 2008),
- $S D(\wedge)$ Willard operations (Barto, Kozik, 2009),

WEAK NEAR-UNANIMITY

Theorem (McKenzie, Maróti, 2006). For a locally finite variety \mathcal{V} the followings are equivalent:
(1) \mathcal{V} omits type $\mathbf{1}$,
(2) \mathcal{V} has a Taylor term,
(3) \mathcal{V} has a weak near-unanimity operation:

$$
p(y, x, \ldots, x) \approx \cdots \approx p(x, \ldots, x, y) \quad \text { and } \quad p(x, \ldots, x) \approx x
$$

Theorem (Larose, Zádori, 2006). If \mathbb{B} is a core and does not have a Taylor (or weak near-unanimity) polymorphism, then $\operatorname{CSP}(\mathbb{B})$ is $\mathbf{N P}$-complete.

Dichotomy Conjecture. If \mathbb{B} is a core and has a weak near-unanimity polymorphism, then $\operatorname{CSP}(\mathbb{B})$ is in \mathbf{P}.

Applications of CSP to universal algebra

Theorem (Siggers, 2008). A locally finite variety \mathcal{V} omits type $\mathbf{1}$ iff it has a 4-ary term t satisfying the equations

$$
t(x, y, z, x) \approx t(y, z, x, z) \quad \text { and } \quad t(x, x, x, x) \approx x
$$

Proof. Consider the directed graph \mathbb{G} defined on the 3 -generated free algebra $\mathbf{F}_{3}(\mathcal{V})$ whose edges are generated by $(x, y),(y, z),(z, x),(x, z)$.
It is smooth, and its core must be a loop.
That loop edge is $t((x, y),(y, z),(z, x),(x, z))$.

Theorem (Barto, Kozik, 2009). A locally finite variety \mathcal{V} omits type $\mathbf{1}$ iff it has a cyclic term p satisfying the equations

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}\right) \approx \cdots \approx p\left(x_{2}, \ldots, x_{n}, x_{1}\right) \quad \text { and } \quad p(x, \ldots, x) \approx x
$$

Theorem (Barto, 2009). A finite relational structure has a near-unanimity polymorphism if and only if it has Jónsson polymorphisms.

Consistency algorithm

$\mathbb{A} \stackrel{?}{\in} \operatorname{CSP}(\mathbb{B})$

$\exists x, y, z, u \in\{1,2,3\} \quad(x, y) \in \mathbb{B} \wedge(y, z) \in \mathbb{B} \wedge(z, u) \in \mathbb{B} \wedge(u, x) \in \mathbb{B}$

Strategies

Definition. A is a set, $\mathbb{B}=(B ; \mathcal{R})$ is relational structure, \mathcal{R} has at most binary relations and is closed under primitive positive formulas. A collection

$$
\mathcal{B}=\left\{B_{i j} \in \mathcal{R} \mid i, j \in A\right\}
$$

of relations is a

- strategy if $B_{j i}=B_{i j}^{-1}$ and $B_{i i} \subseteq\{(b, b) \mid b \in B\}$,
- (1,2)-strategy if $\pi_{1}\left(B_{i j}\right)=\pi_{1}\left(B_{i i}\right)$ and $\pi_{2}\left(B_{i j}\right)=\pi_{2}\left(B_{j j}\right)$,
- (2,3)-strategy if $B_{i k} \subseteq B_{i j} \circ B_{j k}$.

Definition. A function $f: A \rightarrow B$ is a solution of the strategy \mathcal{B} if $(f(i), f(j)) \in B_{i j}$ for all $i, j \in A$.

Definition. The local consistency algorithm turns a strategy (or an instance of the CSP) into a (2,3)-strategy without loosing solutions:

$$
B_{i k}^{\prime}=B_{i k} \cap\left(B_{i j} \circ B_{j k}\right)
$$

Bounded width

Lemma. The local consistency algorithm

- runs in polynomial time (in the size of \mathbb{A}),
- the output is independent of the choices made,
- if the output strategy is empty, then $\mathbb{A} \notin \operatorname{CSP}(\mathbb{B})$.

Definition. \mathbb{B} has width $(2,3)$ if every nonempty (2,3)-strategy has a solution. The notion of bounded width is slightly more general.

Lemma. If \mathbb{B} has bounded width, then $\operatorname{CSP}(\mathbb{B})$ is in \mathbf{P}, but not conversely.
Theorem (Larose, Zádori, 2006). If \mathbb{B} has bounded width, then the variety generated by the algebra $\mathbf{B}=(B ; \operatorname{Pol}(\mathbb{B}))$ omits types $\mathbf{1}$ and $\mathbf{2}$, i.e., \mathbb{B} has Willard polymorphisms.

Theorem (Barto, Kozik, 2009). \mathbb{B} has bounded width if and only if the variety generated by the algebra $\mathbf{B}=(B ; \operatorname{Pol}(\mathbb{B}))$ omits types $\mathbf{1}$ and $\mathbf{2}$.

If \mathbb{B} has at most binary relations, then the $(2,3)$ local consistency algorithm works.

Maltsev ALGORITHM

Definition. B is Maltsev if it has a term t satisfying the equations

$$
t(x, y, y) \approx t(y, y, x) \approx x
$$

Definition. Let $\mathbf{P} \leq \mathbf{B}^{n}$.

- index is $(i, a, b) \in\{1, \ldots, n\} \times B \times B$,
- witness is $(\bar{a}, \bar{b}) \in P^{2}$ such that $a_{1}=b_{1}, \ldots, a_{i-1}=b_{i-1}$ and $a_{i}=a$ and $b_{i}=b$.
- compact representation is a collection of witnesses for each index that can be witnessed.

Given an element $\bar{d} \in \mathbf{B}^{n}$ and an approximation $\bar{c} \in \mathbf{P}$:

$$
c_{1}=d_{1}, \ldots, c_{i-1}=d_{i-1} \quad \text { and } \quad c_{i} \neq d_{i} .
$$

Take a witness (\bar{a}, \bar{b}) for $\left(i, c_{i}, d_{i}\right)$. Then $t(\bar{c}, \bar{a}, \bar{b})$ is a better approximation.
Corollary. The compact representation of \mathbf{P} generates \mathbf{P} as a subalgebra.

Maltsev relational clones

Corollary. \mathbf{B}^{n} has at most exponentially many subalgebras (few subpowers).
Lemma (Dalmau, 2004). Given the compact representations of \mathbf{P} and \mathbf{S}, then the compact representation of

- $\mathbf{P} \times \mathbf{S}$, and
- $\mathbf{P} \cap \mathbf{S}$
can be computed in polynomial time.
Lemma. Given the compact representations of $\mathbf{P}_{1}, \ldots, \mathbf{P}_{k}$, and assume that $P=P_{1} \cup \cdots \cup P_{k}$ is a subuniverse of \mathbf{B}^{n}, then the compact representation of \mathbf{P} can be computed in polynomial time.

Corollary. Given the compact representation of the relations in \mathcal{R}, then the compact representation of any relation defined by a primitive positive formula with relations in \mathcal{R} can be computed in polynomial time.

Problem. Can the compact representation of $\operatorname{Sg}\left(P_{1} \cup \cdots \cup P_{k}\right)$ be computed in polynomial time?

Few subpowers

Definition. An algebra B has few subpowers, if there exists a polynomial $p(n)$ such that $\left|S\left(\mathbf{P}^{n}\right)\right| \leq 2^{p(n)}$ for all n.

- algebras with a Maltsev term $t(y, y, x) \approx t(x, y, y) \approx x$
- algebras with a near-unanimity term $t(y, x, \ldots, x) \approx \cdots \approx t(x, \ldots, x, y) \approx x$.

Theorem (Idziak, Marković, McKenzie, Valeriote, Willard, 2007). An algebra B has few subpowers if and only if it has an edge term t satisfying the equations

$$
\begin{aligned}
t(y, y, x, x, x, \ldots, x, x) & \approx x \\
t(x, y, y, x, x, \ldots, x, x) & \approx x \\
t(x, x, x, y, x, \ldots, x, x) & \approx x \\
& \vdots \\
t(x, x, x, x, x, \ldots, x, y) & \approx x .
\end{aligned}
$$

We have compact representations and similar algorithms for few subpower algebras.

Combined algorithm

Theorem. Let \mathbb{B} be a finite relational structure, \mathbf{B} be the corresponding algebra on the same universe with all polymorphisms of \mathbb{B} as basic operations, and β be a congruence of \mathbf{B}. If \mathbf{B} / β has few subpowers and the induced algebras on the β-blocks generate $\mathrm{SD}(\wedge)$ varieties, then $\operatorname{CSP}(\mathbb{B})$ is in \mathbf{P}.
"Few subpowers above β and bounded width below β."
Definition. B is an algebra, \mathbf{B} / β is Maltsev. The system

$$
\mathcal{M}=\left\{M_{i j} \leq \mathbf{B}^{2} \times(\mathbf{B} / \beta)^{n} \mid i, j \in A\right\}
$$

is a Maltsev strategy, if

- if $(a, b, \bar{c}) \in M_{i j}$ then $a / \beta=c_{i}$ and $b / \beta=c_{j}$,
- if $i=j$ then $a=b$,
- $M_{i k} \subseteq \underbrace{\left\{(a, b, \bar{c}) \mid \exists d(a, d, \bar{c}) \in M_{i j},(b, d, \bar{c}) \in M_{j k}\right\}}_{M_{i j} \circ M_{j k}}$.

Consistency algorithm: $M_{i k}^{\prime}=M_{i k} \cap\left(M_{i j} \circ M_{j k}\right)$.

TRACTABLE ALGEBRAS

- bounded width
- few subpowers
- any finite product of bounded width and few subpower algebras
- subuniverses of tractable algebras
- homomorphic images of tractable algebras

Corollary. Let \mathcal{V} be an idempotent variety. Then every member of the subpseudovariety generated by the bounded width and few subpowers algebras in \mathcal{V} is tractable.

The "few subpowers below β and bounded width above β " case is still open.
Theorem (Markovic, McKenzie, 2009). If \mathbf{B} / β is a semilattice with

- a chain order, or
- a flat semilattice order,
and every β-block is Maltsev, then \mathbf{B} is tractable.

Thank you!

