THE CONSTRAINT SATISFACTION PROBLEM FOR BOUNDED WIDTH AND MALTSEV ALGEBRAS

Miklós Maróti University of Szeged

BLAST, Las Cruces, NM

August 10–14, 2009.

CONSTRAINT SATISFACTION PROBLEM (CSP)

Definition. For a finite relational structure $\mathbb{B} = (B; \mathcal{R})$ we define

 $\mathrm{CSP}(\mathbb{B}) = \{ \mathbb{A} \mid \mathbb{A} \to \mathbb{B} \}.$

Example. $CSP(\bigtriangleup)$ is the class of three-colorable (directed) graphs.

Example. CSP(1) is the class of (directed) bipartite graphs.

The membership problem for $CSP(\mathbb{B})$ is always decidable in nondeterministic polynomial time (**NP**, intractable), sometimes in polynomial time (**P**, tractable).

Dichotomy Conjecture (Feder, Vardi, 1999). For every finite structure \mathbb{B} the membership problem for $CSP(\mathbb{B})$ is either in **P** or **NP**-complete.

Has been verified in many special cases (2-element structures, undirected graphs, smooth directed graphs, etc.) and yielded structure theorems in the tractable cases. Open for directed graphs.

CSP REDUCTIONS

Lemma. We may assume, that

- \mathbb{B} is a core, i.e., every endomorphism is an automorphism,
- every unary constraint relation $\{b\}$ is in \mathbb{B} ,
- all relations are at most binary (or directed graph).

Definition. A **polymorphism** of \mathbb{B} is a homomorphism $p : \mathbb{B}^n \to \mathbb{B}$ (edge preserving operation).

$$\operatorname{Pol}(\mathbb{B}) = \{ p \mid p : \mathbb{B}^n \to \mathbb{B} \}.$$

Lemma. $Pol(\mathbb{B})$ is a clone, and all polymorphisms are idempotent under our assumptions

$$p(x,\ldots,x) \approx x.$$

Lemma. $\operatorname{Pol}(\mathbb{C}) \subseteq \operatorname{Pol}(\mathbb{B}) \Longrightarrow \operatorname{CSP}(\mathbb{B})$ is polynomial time reducible to $\operatorname{CSP}(\mathbb{C})$.

- \mathbb{B} has nice polymorphisms $\Longrightarrow \operatorname{CSP}(\mathbb{B})$ is in **P**.
- \mathbb{B} has no nice polymorphisms $\implies CSP(\mathbb{B})$ is **NP**-complete.

NICE POLYMORPHISMS

Theorem. $CSP(\mathbb{B})$ is in **P** if $Pol(\mathbb{B})$ contains one of the following:

- a semilattice operation (Jevons et. al.)
- a near-unanimity operation

 $p(y, x, \dots, x) \approx p(x, y, x, \dots, x) \approx \dots \approx p(x, \dots, x, y) \approx x,$

- a totally symmetric idempotent operation (Dalmau, Pearson, 1999),
- a Maltsev operation: $p(x, y, y) \approx p(y, y, x) \approx x$ (Bulatov, 2002; Dalmau, 2004),
- Generalized majority-minority operation (Dalmau, 2005),
- Edge operations (Idziak, Marković, McKenzie, Valeriote, Willard, 2007),
- CD Jónsson operations (Barto, Kozik, 2008),
- $SD(\wedge)$ Willard operations (Barto, Kozik, 2009),

WEAK NEAR-UNANIMITY

Theorem (McKenzie, Maróti, 2006). For a locally finite variety \mathcal{V} the followings are equivalent:

(1) \mathcal{V} omits type **1**,

(2) \mathcal{V} has a Taylor term,

(3) \mathcal{V} has a weak near-unanimity operation:

 $p(y, x, \dots, x) \approx \dots \approx p(x, \dots, x, y)$ and $p(x, \dots, x) \approx x$.

Theorem (Larose, Zádori, 2006). If \mathbb{B} is a core and does not have a Taylor (or weak near-unanimity) polymorphism, then $CSP(\mathbb{B})$ is **NP**-complete.

Dichotomy Conjecture. If \mathbb{B} is a core and has a weak near-unanimity polymorphism, then $CSP(\mathbb{B})$ is in **P**.

Applications of CSP to universal algebra

Theorem (Siggers, 2008). A locally finite variety \mathcal{V} omits type 1 iff it has a 4-ary term t satisfying the equations

$$t(x, y, z, x) \approx t(y, z, x, z)$$
 and $t(x, x, x, x) \approx x$.

Proof. Consider the directed graph \mathbb{G} defined on the 3-generated free algebra $\mathbf{F}_3(\mathcal{V})$ whose edges are generated by (x, y), (y, z), (z, x), (x, z). It is smooth, and its core must be a loop. That loop edge is t((x, y), (y, z), (z, x), (x, z)).

Theorem (Barto, Kozik, 2009). A locally finite variety \mathcal{V} omits type 1 iff it has a cyclic term p satisfying the equations

$$p(x_1, x_2, \dots, x_n) \approx \dots \approx p(x_2, \dots, x_n, x_1)$$
 and $p(x, \dots, x) \approx x$.

Theorem (Barto, 2009). A finite relational structure has a near-unanimity polymorphism if and only if it has Jónsson polymorphisms.

CONSISTENCY ALGORITHM

 $\exists x, y, z, u \in \{1, 2, 3\} \quad (x, y) \in \mathbb{B} \land (y, z) \in \mathbb{B} \land (z, u) \in \mathbb{B} \land (u, x) \in \mathbb{B}$

STRATEGIES

Definition. A is a set, $\mathbb{B} = (B; \mathcal{R})$ is relational structure, \mathcal{R} has at most binary relations and is closed under primitive positive formulas. A collection

$$\mathcal{B} = \{ B_{ij} \in \mathcal{R} \mid i, j \in A \}$$

of relations is a

- strategy if $B_{ji} = B_{ij}^{-1}$ and $B_{ii} \subseteq \{ (b, b) \mid b \in B \},$
- (1,2)-strategy if $\pi_1(B_{ij}) = \pi_1(B_{ii})$ and $\pi_2(B_{ij}) = \pi_2(B_{jj})$,
- (2,3)-strategy if $B_{ik} \subseteq B_{ij} \circ B_{jk}$.

Definition. A function $f : A \to B$ is a **solution** of the strategy \mathcal{B} if $(f(i), f(j)) \in B_{ij}$ for all $i, j \in A$.

Definition. The local consistency algorithm turns a strategy (or an instance of the CSP) into a (2,3)-strategy without loosing solutions:

$$B'_{ik} = B_{ik} \cap (B_{ij} \circ B_{jk}).$$

Bounded width

Lemma. The local consistency algorithm

- runs in polynomial time (in the size of \mathbb{A}),
- the output is independent of the choices made,
- if the output strategy is empty, then $\mathbb{A} \notin CSP(\mathbb{B})$.

Definition. \mathbb{B} has width (2,3) if every nonempty (2,3)-strategy has a solution. The notion of **bounded width** is slightly more general.

Lemma. If \mathbb{B} has bounded width, then $CSP(\mathbb{B})$ is in \mathbf{P} , but not conversely.

Theorem (Larose, Zádori, 2006). If \mathbb{B} has bounded width, then the variety generated by the algebra $\mathbf{B} = (B; \operatorname{Pol}(\mathbb{B}))$ omits types 1 and 2, i.e., \mathbb{B} has Willard polymorphisms.

Theorem (Barto, Kozik, 2009). \mathbb{B} has bounded width if and only if the variety generated by the algebra $\mathbf{B} = (B; \operatorname{Pol}(\mathbb{B}))$ omits types 1 and 2.

If \mathbb{B} has at most binary relations, then the (2,3) local consistency algorithm works.

MALTSEV ALGORITHM

Definition. B is Maltsev if it has a term t satisfying the equations

 $t(x, y, y) \approx t(y, y, x) \approx x.$

Definition. Let $\mathbf{P} \leq \mathbf{B}^n$.

- index is $(i, a, b) \in \{1, \dots, n\} \times B \times B$,
- witness is $(\bar{a}, \bar{b}) \in P^2$ such that $a_1 = b_1, \ldots, a_{i-1} = b_{i-1}$ and $a_i = a$ and $b_i = b$.
- **compact representation** is a collection of witnesses for each index that can be witnessed.

Given an element $\overline{d} \in \mathbf{B}^n$ and an approximation $\overline{c} \in \mathbf{P}$:

$$c_1 = d_1, \dots, c_{i-1} = d_{i-1}$$
 and $c_i \neq d_i$.

Take a witness (\bar{a}, \bar{b}) for (i, c_i, d_i) . Then $t(\bar{c}, \bar{a}, \bar{b})$ is a better approximation.

Corollary. The compact representation of \mathbf{P} generates \mathbf{P} as a subalgebra.

MALTSEV RELATIONAL CLONES

Corollary. \mathbf{B}^n has at most exponentially many subalgebras (few subpowers).

Lemma (Dalmau, 2004). Given the compact representations of \mathbf{P} and \mathbf{S} , then the compact representation of

- $\mathbf{P} \times \mathbf{S}$, and
- $\bullet \ \mathbf{P} \cap \mathbf{S}$

can be computed in polynomial time.

Lemma. Given the compact representations of $\mathbf{P}_1, \ldots, \mathbf{P}_k$, and assume that $P = P_1 \cup \cdots \cup P_k$ is a subuniverse of \mathbf{B}^n , then the compact representation of \mathbf{P} can be computed in polynomial time.

Corollary. Given the compact representation of the relations in \mathcal{R} , then the compact representation of any relation defined by a primitive positive formula with relations in \mathcal{R} can be computed in polynomial time.

Problem. Can the compact representation of $Sg(P_1 \cup \cdots \cup P_k)$ be computed in polynomial time?

FEW SUBPOWERS

Definition. An algebra **B** has **few subpowers**, if there exists a polynomial p(n) such that $|S(\mathbf{P}^n)| \leq 2^{p(n)}$ for all n.

- algebras with a Maltsev term $t(y, y, x) \approx t(x, y, y) \approx x$
- algebras with a near-unanimity term $t(y, x, \ldots, x) \approx \cdots \approx t(x, \ldots, x, y) \approx x$.

Theorem (Idziak, Marković, McKenzie, Valeriote, Willard, 2007). An algebra **B** has few subpowers if and only if it has an edge term t satisfying the equations

$$t(y, y, x, x, x, \dots, x, x) \approx x$$
$$t(x, y, y, x, x, \dots, x, x) \approx x$$
$$t(x, x, x, y, x, \dots, x, x) \approx x$$
$$\vdots$$
$$t(x, x, x, x, x, \dots, x, y) \approx x.$$

We have compact representations and similar algorithms for few subpower algebras.

COMBINED ALGORITHM

Theorem. Let \mathbb{B} be a finite relational structure, \mathbf{B} be the corresponding algebra on the same universe with all polymorphisms of \mathbb{B} as basic operations, and β be a congruence of \mathbf{B} . If \mathbf{B}/β has few subpowers and the induced algebras on the β -blocks generate $SD(\wedge)$ varieties, then $CSP(\mathbb{B})$ is in \mathbf{P} .

"Few subpowers above β and bounded width below β ."

Definition. B is an algebra, \mathbf{B}/β is Maltsev. The system

$$\mathcal{M} = \{ M_{ij} \leq \mathbf{B}^2 \times (\mathbf{B}/\beta)^n \mid i, j \in A \}$$

is a Maltsev strategy, if

- if $(a, b, \overline{c}) \in M_{ij}$ then $a/\beta = c_i$ and $b/\beta = c_j$,
- if i = j then a = b,

•
$$M_{ik} \subseteq \underbrace{\{(a, b, \overline{c}) \mid \exists d \ (a, d, \overline{c}) \in M_{ij}, (b, d, \overline{c}) \in M_{jk}\}}_{M_{ij} \circ M_{jk}}$$
.

Consistency algorithm: $M'_{ik} = M_{ik} \cap (M_{ij} \circ M_{jk}).$

TRACTABLE ALGEBRAS

- bounded width
- few subpowers
- any finite product of bounded width and few subpower algebras
- subuniverses of tractable algebras
- homomorphic images of tractable algebras

Corollary. Let \mathcal{V} be an idempotent variety. Then every member of the subpseudovariety generated by the bounded width and few subpowers algebras in \mathcal{V} is tractable.

The "few subpowers below β and bounded width above β " case is still open.

Theorem (Markovic, McKenzie, 2009). If \mathbf{B}/β is a semilattice with

- a chain order, or
- a flat semilattice order,

and every β -block is Maltsev, then **B** is tractable.

THANK YOU!